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Abstract

Workers are at risk when entering or exiting elevated scissor lifts. In this study, we recorded 

ground shear forces and postural instability from 22 construction workers while they performed 

ingress and egress between a scissor lift and an adjacent work surface with varying lift gate 

opening designs, horizontal and vertical gaps, and sloped work surfaces. From the results of this 

study, we observed higher peak ground shear forces when using a bar-and-chain opening, with 

larger horizontal gap, with the lift surface more than 8 inches below the work surface, and having a 

sloped (26 degrees) work surface. Similar trends were observed for postural instability except the 

influence of vertical distance was not significant. To reduce slip/trip/fall risk and postural 

instability of workers while entering or exiting an elevated scissor lift, we suggest scissor lifts be 

equipped with a gate-type opening to replace the bar-and-chain design. We also suggest the lift 

surface be placed no more than 0.2 m lower than the work surface and the horizontal gap is as 

small as possible. Selecting a non-sloped surface to exit or enter a scissor lift is also desirable.
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Introduction

Scissor lifts are commonly found at many construction sites, and when they are used 

properly they can facilitate completion of many construction tasks. Over the past decade, the 

use of scissor lifts has increased significantly in industries such as construction, 
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telecommunication, and warehousing and storage. The growing popularity makes scissor lift 

safety an important issue. The scaffolding industry has long recognized fall hazards 

associated with work on scissor lifts (Burkart et al., 2004; Heath, 2006; McCann, 2003). A 

study of the Census of Fatal Occupational Injuries (CFOI) data found that falls from vertical 

lifts accounted for 44% of vertical-lift deaths, almost all involving scissor lifts (McCann, 

2003). A later study conducted by the National Institute for Occupational Safety and Health 

(NIOSH) confirmed the increasing trend for fatalities associated with falls from scissor lifts 

and further identified that extensibility factors—the extended height of the lift or the vertical 

position of the worker—were significant contributing factors to 72% of the scissor lift 

fatalities (Pan et al., 2007).

Scissor lifts are available that can reach between 6 and 15 m (20 and 50 ft). At such heights, 

the stability of the lift and worker are of great concern. According to the recent draft version 

of American National Standards Institute (ANSI) A10.29 (2012), workers may enter and exit 

scissor lifts at heights greater than 1.8 m (6 ft) when the lift platform surface is adjacent to 

the elevated surface. The standard further specifies that if the lift platform is adjacent to the 

elevated surface, there shall not be a vertical gap larger than 0.2 m (8 inches) or a horizontal 

gap larger than 0.35 m (14 inches) between the lift platform and the adjacent surface. To 

date, there has been no scientific study on the manner in which the vertical and horizontal 

gaps were determined and how the distances between the lift platform and the adjacent 

surface may affect each worker's postural stability. In practice, scissor lifts are sometimes 

positioned at a vertical distance greater than that recommended by the ANSI standard (0.2 m 

or 8 inches).

Uneven surfaces could significantly increase the risk of falling, especially during ingress and 

egress actions. Two types of uneven surfaces are typically considered during the ingress and 

egress of a scissor lift. One is the difference in elevation between the lift platform and the 

adjacent work surface; namely, the work surface is either higher or lower than the platform 

of the scissor lift. The second type of uneven surface is an inclined surface; namely, the 

adjacent work surface is sloped compared to the platform of the scissor lift. Both conditions 

introduce significant safety concerns for the use of scissor lifts. First of all, a difference in 

surface elevations significantly increases the risk of slip and trip (Brauer, 2006). Second, a 

decided or large difference in surface elevations could significantly increase trunk instability 

and alter ground impact forces during worker foot contact (landing), which also increases 

the risk of falling (Fathallah and Cotnam, 1998; Fathallah and Cotnam, 2000). An inclined 

work surface introduces a higher risk of slipping due to increased ground shear forces and 

reduced ground compression forces (Zhao et al., 1987). Previous studies have shown that 

standing on inclined surfaces could reduce standing stability (Bhattacharya et al., 

2002/2003; Lin and Nussbaum, 2012; Simeonov et al., 2003, 2009) and may cause changes 

to body postures and lower extremity biomechanics (Mezzarane and Kohn, 2007; Sasagawa 

and Ushiyama, 2009). When walking on inclined surfaces, the pattern of walking as well as 

lower extremity biomechanics will also be altered (in comparison to walking on flat ground) 

in order to compensate for the increased risk of slip and fall (Leroux et al., 2002; McIntosh 

et al., 2006). Finally, when performing manual tasks (such as trunk bending and lifting) on 

inclined surfaces, previous studies have observed altered and unbalanced trunk 

biomechanical responses (Bhattacharya et al., 2002/2003; Hu et al., 2013, 2016; Jiang et al., 
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2005), increased magnitude of spinal loading (Shin and Mirka, 2004), and reduced trunk 

stability (Wade and Davis, 2009) among testing participants. These conclusions are in line 

with the high incidence rate of fall-related fatal and nonfatal injuries reported from the 

roofing industry (Wade and Davis, 2005).

Additionally, there is a lack of quantitative data to demonstrate that potential risks may be 

associated with improper exiting and entering techniques, especially at heights. Measuring 

sway and other measures of postural instability at heights is difficult (Bain and Marklin, 

2012). In fact, this is the first study in the literature to evaluate postural instability, inclined 

surface effect, and impact force during ingress/egress to an elevated device—a scissor lift. 

This study also demonstrates how advanced experimental design can be used to develop 

scientific hypotheses and responds to numerous requests from an industry-wide standard 

committee (i.e., ANSI A10.29) for methods that involve the safe use of a scissor lift.

The objective of this study was to evaluate the postural instability and impact forces during 

various methods of exiting and entering scissor lifts at elevation. The first part of the study 

examined the effects of vertical and horizontal gaps between the lift platform and the 

adjacent surface on each worker's postural stability. These were evaluated on two types of 

scissor lift entrance/exit systems. The second part of the study focused on the effect of an 

inclined landing surface. The hypothesis was that the maximum interaction forces between 

human participants and landing surfaces resulting from various ingress/egress conditions 

were different and such differences affect workers' postural stability at elevations and 

inclined surfaces.

1. Methods

1.1. Participants

Twenty-two male construction workers, mean age of 28.5 ± 10.7 years, who had at least 1 

year of experience in working with scissor lifts were recruited from northern West Virginia. 

Their mean body weight was 82.8 ± 3.3 kg (182.5 ± 7.4 lbs), and mean body height was 

1.82 ± 0.08 m (6.0 ± 0.29 ft). All participants underwent a health-history screening before 

participating in the study to ensure they were free of a history of dizziness, tremor, vestibular 

disorders, neurological disorders, diabetes, chronic back pain, and falls within the past year 

resulting in injury with days away from work. Each participant gave informed consent 

according to the procedures approved by the NIOSH Institutional Review Board.

1.2. Laboratory Setup

A commercially available 5.79 m (19 ft) electric scissor lift (Model SJIIIE 3219, Skyjack, 

Inc, Ontario, Canada) was used for the study. The SJIIIE 3219 scissor lift platform has a 

deck extension, a gate for ingress and egress, guardrails around its periphery, as well as 

toeboards on all sides (Figure 1). This lift platform has a length and a width of 

approximately 0.73 and 1.6 m (29 and 64 inches), respectively, and a deck to extend overall 

length to approximately 2.54 m (100 inches). The guardrails, composed of a toprail and a 

midrail, have a height of 0.99 m (39 inches). The toeboard is about 0.15 m (6 inches) high. 

This type of scissor lift has a total load-bearing capacity of 249.4 kg (550 lbs). The separate 
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rated load-bearing capacity on the main lift platform and 0.9-m (3-ft) deck are 113.3 and 

136.0 kg (250 and 300 lbs), respectively. These specifications conform to ANSI standard 

A92.6 for Self-Propelled Elevating Work Platforms.

A test structure (Figure 2) was constructed to house measurement devices for capturing 

force data related to foot pressure from participants stepping from the aerial lift. This 

structure duplicated conditions found in worksites to be accessed by scissor lifts and served 

to capture force data typical of that found for workers who routinely step from aerial lifts 

onto construction or other work surfaces. One side of the test structure was adjacent to the 

scissor lift while the other side was connected to a mezzanine (2.7 meters or 9 feet height). 

The participant accessed the mezzanine by climbing stairs at the rear of the test structure, 

then entered the test structure and the scissor lift. After the testing trials were completed, 

participants used the mezzanine and stairs to return to the ground floor. Each participant was 

protected from fall hazards comprehensievly during the testing (e.g., safety net was 

constructed between the scissor lift and the test structure) (Figure 2).

The test structure was 2.4 m (8 ft) tall, constructed of wood (in the shape of rectangular 

prism), with a top surface area of 1.2 by 2.1 m (4 by 7 ft). It was constructed to house a force 

plate 0.9 by 0.6 by 0.08 m (35½ by 25⅝ by 3½ inches) level with the work surface. 

Guardrails were established along the sides of the top of the wood structure and one side of 

the structure was adjacent to the gate of the scissor lift for access to the lift. A force plate 

was secured to a lift table that was bolted to the top of the wood structure. The Bishman lift 

table (Bishamon Lift-2K®; Port Washington, New York) (Figure 2) had a platform surface 

area of 0.9 by 1.2 m (36 by 48 inches), a capacity of 907 kg (2,000 lbs), and an adjustable 

height of 0 to 0.76 m (0 to 30 inches). The height of the lift table was adjusted to achieve the 

desired vertical height for the experiment. A second force plate was placed on the top of the 

scissor lift platform for measuring the participant's baseline postural stability before exiting 

the scissor lift. The scissor lift height was set at 3.04 m (10 ft) at all times.

Two three-dimensional Kistler™ force plates (Kistler Group, Winterthur, Switzerland), one 

on the lift platform and one on the lift table, were used to determine the impact forces and 

postural instability in each of the experimental conditions (Figure 2). Following standard 

calibration procedures for the Kistler, a comparison with data collected on the height of both 

the lift platform and lift table (on the test structure) with the data collected on the ground 

level was performed, and no significant differences were identified.

1.3. Experimental Conditions and Procedures

The height of the scissor lift was set at 3.04 m (10 ft) for all trials, and two experimental 

sessions were conducted on two different days. The rationale for testing at the 3.04-m (10-ft) 

height was that 83% of aerial lift falls, collapses, and tipovers occurred within the height 

categories of 3.04–5.79 m (10–19 ft) and 6.09–8.83 m (20–29 ft) (Pan et al., 2007).

Two experimental sessions were conducted. In Session 1, participants performed 42 ingress 

and 42 egress trials while subject to three varying test conditions—lift type, vertical 

distance, and horizontal distance. Two types of scissor lifts were examined—one with a gate 

that could be opened for ingress or egress (hereinafter referred to as the “gate” condition) 
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and the other with a bar and a chain on the side of the lift (hereinafter referred to as the “bar 

and chain” condition) (Figure 3(a)-(b)). Seven different vertical landing positions (distance) 

were tested: same height as the lift (0 m); 0.1, 0.2, 0.3 m (4, 8, and 12 inches respectively) 

lower; and 0.1, 0.2, 0.3 m (4, 8, and 12 inches respectively) higher than the lift platform. The 

horizontal distance from the landing surface was 0.17, 0.35, or 0.53 m (7, 14, or 21 inches 

respectively) from the lift platform. Both the vertical and horizontal test distances we 

selected were based on the ANSI A10.29 draft standard (2012) for using aerial platforms in 

construction.

In Session 2, participants were tested for a total of 12 ingress and 12 egress trials while 

subjected to three varying test conditions—lift type, vertical distance, and slope. The lift 

types varied between the two configurations (“gate” and “bar and chain”) described in the 

preceding paragraph. The vertical distance varied among three conditions: the same vertical 

height (0 m), the lift surface 0.2 m lower than the adjacent work surface (-8 inches), or the 

lift surface 0.2 m higher than the adjacent work surface (8 inches). The slope of the work 

surface was varied at either 0 or 26 degrees (∼6/12 pitch). This sloped surface was 

symmetrically placed with the lower edge facing the scissor lift. The selection of the slope of 

6/12 pitch was undertaken because it is the most popular roof slope at which scissor lifts are 

used. During this session, the horizontal distance between the work surface and the scissor 

lift was fixed at 0.35 m (14 inches) from the exiting plane, and subjects were required to use 

a guardrail while exiting and entering the lift. The horizontal distance reflected common 

working conditions (Kroemer and Grandjean, 1997).

The order of trials for each session was randomized for each participant, with an exception 

that we did not include the lift type in the randomization order due to the difficulties and 

time constrains of changing from a “gate” to a “bar and chain” opening.

Each subject's postural stability during the landing phase of each ingress or egress motion 

was quantified using center of pressure (CP) data registered on a force plate. Postural sway 

is a normal phenomenon in human beings. As postural sway movement causes the body's CP 

to approach one's stability boundary, as defined by the outer edges of the base of support, the 

potential for postural instability increases. In this study, two variables were derived from CP 

excursions and were used to quantitatively determine each subject's postural stability. The 

two variables are postural sway distance in medial-lateral (ML) direction and anterior-

posterior (AP) direction (Bhattacharya et al., 2002/2003; Chiou et al., 2003; Pan et al., 

2009).

The test procedures for egress started with a participant standing quietly on the force plate 

within the scissor lift. Upon a voice command, the participant then stepped onto the adjacent 

work surface. The resultant landing forces registered on the force plate located on the 

landing surface were recorded. The same procedure was followed for the evaluation of 

ingress motions from the work surface to the scissor lift platform.

1.4. Independent Variables

The independent variables for experiments in Session 1 were task (ingress or egress), lift 

type (gate or bar and chain), vertical distance (work surface is a vertical distance of -0.3 m 
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[-12 inches], -0.2 m [-8 inches], -0.1 m [-4 inches], 0 m [0 inches], 0.1 m [4 inches], 0.2 m 

[8 inches], 0.3 m [12 inches] from the lift surface) and horizontal distance (work surface is 

0.17 m [7 inches], 0.35 m [14 inches], or 0.53 m [21 inches] away from the lift platform). 

The independent variables for experiments in Session 2 were task (ingress or egress), lift 

type (gate or bar and chain), vertical distance (work surface is a vertical distance of -0.2 m 

[-8 inches], 0 m [0 inches], and 0.2 m [8 inches] from the lift surface), and slope (work 

surface was either 0 or 26 degrees).

1.5. Dependent Measures

Two groups of dependent variables were examined to evaluate the ingress and egress tasks. 

The first group included maximum impact forces in medial-lateral (Fx) and anterior-

posterior (Fy) directions during landing. The second group of dependent variables 

characterizes the postural stability during landing phase of ingress and egress motions. The 

maintenance of postural balance is a complex process that is achieved through the 

coordination among body segments and between the whole body and the environment. 

Anterior-posterior (AP) and medial-lateral (ML) sway were used to evaluate postural 

stability based on the participant's center of pressure excursions determined during the 

landing phase of ingress and egress motions from the scissor lift. AP and ML sway were 

defined as the sway distance in the anterior-posterior and medial-lateral direction during the 

first 30 seconds after landing (Bhattacharya et al., 2002/2003).

2. Statistical Analysis

Statistical Analysis System (SAS) software (SAS Institute Inc., Cary, NC, USA) was used to 

perform all data analyses. Prior to any statistical testing, the normality assumption was 

examined using a probability plot. To stabilize variance, data were transformed to their 

natural logarithm to achieve approximate normality of the statistical distributions when 

appropriate.

Repeated measures analyses of variance (ANOVAs) were performed using SAS MIXED 

procedure to evaluate the effect of different experimental conditions on each dependent 

variable. In this mixed model approach, the fixed effects included four independent variables 

(task, lift type, vertical distance, and horizontal distance) for Session 1 and four independent 

variables (task, lift type, vertical distance, and slope) for Session 2; random effects included 

the correlation within each individual participant.

For each dependent variable, we selected the appropriate covariance model by evaluating 

models with different covariance structures for each participant. These covariance structures 

included (1) direct product compound-symmetry, (2) direct product unstructured, and (3) 

direct product autoregressive. We selected an appropriate model based on Akaike's 

Information Criterion (AIC), a modified criterion from AIC for use in small samples 

(AICC), and Schwarz's Bayesian Criterion (SBC) for final analysis using the restricted 

maximum likelihood method.

Dependent variables that were statistically significant were selected for result interpretation. 

For multiple comparisons, the Tukey-Kramer (Dunnett, 1980) adjustment was used to 
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determine significant differences among the experimental conditions. The significance level 

(α) for this study was set at 0.05.

3. Results

3.1. Experiment on Session 1

Repeated measures ANOVAs showed that main effects significantly influenced most 

dependent variables; changes in horizontal distance did not significantly influence Fy and 

ML sway, the influences of different vertical distances on AP and ML sway were also not 

signifcant. More specifically, as shown in Figures 4 and 5, significantly lower peak ground 

shear forces (Fx and Fy) and sway in both AP and ML directions were observed when using 

gate opening (vs. bar and chain opening) and during egress (vs. ingress) of the scissor lift. 

Larger horizontal distance resulted in significantly higher peak Fx and AP sway especially in 

the 0.53-m [21-inch] gap condition. The lowest ML sway was observed at the 0.35-m [14-

inch] condition, but the magnitude of ML sway distance in all three conditions (0.17 m [7 

inches], 0.35 m [14 inches], and 0.53 m [21 inches]) were relatively low. Finally, 

significantly larger peak ground shear forces were observed when the scissor lift was more 

than 0.2 m [8 inches] lower than the work surface.

3.2. Experiments in Session 2

Results from Session 2 showed that main effects lift type and slope significantly influenced 

both peak ground shear forces (Fx and Fy) and sway in both directions. Task significantly 

influenced Fy and vertical distance significantly influenced peak ground shear force Fx. 

More specifically, using gate opening (vs. bar and chain opening) and flat work surface (vs. 

26-degree sloped work surface) resulted in significantly lower peak Fx, Fy, as well as AP and 

ML sway (Figures 6 and 7). When the scissor lift was lower than the work surface, 

significantly higher peak Fx was observed. Finally, exit from the lift generated significantly 

larger Fy. From Figure 7(e), we can observe a clear interaction effect between task and slope 

on Fy. This phenomenon was mainly due to the generation of a much higher peak ground 

shear force in the AP direction when landing on a sloped surface.

4. Discussion

The objective of this study was to evaluate the risk of slip and fall and postural instability 

during various methods of entering and existing scissor lifts at elevation. The results of the 

Session 1 experiments revealed a greater risk of slip and fall (greater peak ground shear 

forces Fx and Fy and greater sway in both AP and ML directions) when using a bar and 

chain opening as compared to a gate opening (Figure 4(a) and Figure 5(a)). During the data 

collection, it was noted that when subjects performed an egress task from a scissor lift with a 

bar and chain opening, first they would unhook the chain on the lift then bend at their waist 

or squat down in order to pass under the top rail (1.07-m [42.5-inch] height). They typically 

experienced a limited/confined inside space between rails (0.63-m or 25-inch width) while 

rotating/bending their body toward an open space to exit the lift. To enter a lift with the bar 

and chain opening, subjects needed to bend their upper body laterally to pass through the top 

rail while rotating toward the lift platform. These complex body movements resulted from 
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the geometric constraints of the lift and job site environment and caused perturbations to the 

postural balance system immediately after ingress or egress (Singh et al., 2014; Winter, 

1990). The ergonomic recommendations for the dimensions of confined space are to some 

extent based on anthropometric data, and the above-mentioned workstation design indeed is 

determined to be potentially hazardous (Bottoms, 1983; Kroemer and Grandjean, 1997). 

These complex motions associated with using bar and chain openings created non-vertical 

foot landing postures and, therefore, resulted in larger peak ground shear forces. Entering 

into the lift also generated much larger ground shear forces and sways as compared to 

exiting from the lift. We believe such results are mainly due to the unstable nature of the lift 

surface. When stepping onto the lift surface, a certain degree of sway and wobbling is 

generated due to the impact. Such ground motion likely generated the observed increase in 

peak ground shear forces as well as AP and ML sway (Figure 4(b) and Figure 5(b)). When 

the horizontal gap between the lift and the adjacent structural surface increases, participants 

demonstrated significantly increased peak ground shear forces in the AP direction (i.e., Fx) 

and greater sway in the AP direction (Figure 4(c) and Figure 5(c)). When larger horizontal 

distances present, the participant's landing foot becomes less vertically aligned to the landing 

surface, which results in larger ground shear forces. Crossing a larger horizontal distance 

also increased the CP sway in the direction of the motion (i.e., the AP direction). Finally, 

when the scissor lift surface was more than 0.2 m [8 inches] below the work surface 

participants demonstrated significantly higher ground shear forces (Figure 4(d)). The larger 

overall impact force when stepping down onto the scissor lift surface likely generated an 

increase in ground shear force as well as sway. Some increase of CP sway in both AP and 

ML directions were also observed when there was a vertical gap between the lift surface and 

the adjacent work surface; however, such increases were not significant (Figure 5(d)).

In Session 2, we observed smaller peak ground shear forces and CP sways when using a gate 

opening as compared to a bar and chain opening (Figure 6(a) and Figure 7(a)). In addition, 

smaller peak ground shear forces and sways were also found when the work surface was flat 

vs. sloped (Figure 6(c) and Figure 7(c)). Two conditions were tested: one involving no slope 

and one involving a 26-degree slope. Variable measures of instability and force may have 

been returned with variable measures of slope, but for the purposes of this project, no slope 

was contrasted with a decided slope condition. Greater indicators of postural instability—

heightened medial-lateral sway and increased anterior-posterior sway—were found to be 

significantly associated with a sloped landing surface, and it is the finding of this study that 

sloped surfaces should not be used as landing surfaces (Jones and Hignett, 2007).

Many previous studies investigated sloped and inclined surfaces associated with trunk and 

whole-body kinematics during manual material handling and gait (Leroux et al., 2002; Shin 

and Mirka, 2004; Hu et al., 2013, 2016). Tasks involving an upward body motion created 

greater postural demands on the subjects (Kluzik et al., 2005, 2007; Mezzarane and Kohn, 

2007). Entering or exiting onto a lift from a sloped surface placed greater postural demands 

on the subjects compared to a non-sloped landing surface. This study also identified results 

that were similar to those studies associated with inclined surfaces: increased the range of 

motion, elevated the muscle activation level (i.e., increase muscle strength requirement), 

deployed appropriate postural muscle corrective actions, and caused muscle fatigue in 

various test conditions (Bhattacharya et al., 2002/2003; McIntosh et al., 2006; McNitt-Gray, 
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1993; Mezzarane and Kohn, 2007; Yung-Hui and Wei-Hsien, 2005). A previous study on the 

postural sway following prolonged exposure to an inclined surface (Wade and Davis, 2009) 

indicated that an individual is less stable directly after performing tasks on an inclined 

surface and highlighted the importance of optimal work-rest cycles. Several studies on 

postural stability of roofers suggested there might be an adaptation period associated with 

working on a sloped surface and more emphasis should be given to workers in the adaption 

period after exposure to inclined surfaces (Choi and Fredericks, 2008; Hsiao and Simeonov, 

2001; Simeonov et al., 2004).

This study demonstrated that ground shear impact forces and postural stability were 

significantly affected by scissor lift type, horizontal and vertical distances between the lift 

surface and the work surface, the slope of the work surface, and methods of adjusting the 

body while entering/exiting the lift. Future studies are needed to examine if the 

anthropometric size of the subjects affect the ingress/egress strategies and the resultant 

impact forces and postural instability. Such research could lead to an extension of the design 

criteria for structural components of the lift that have been demonstrated to significantly 

influence the human-machine interface. In addition, the body position at landing and 

performance execution in relation to the requirement of the lift should be further examined. 

The propensity toward falls as a function of excursions within and beyond the CP could also 

be examined (Bagchee et al., 1998; Chiou et al., 2003).

ANSI A10.29 draft standard (2012) states that “when transferring to an elevated surface, 

there should be sufficient vertical clearance to allow for movement of the platform as weight 

is transferred to or from the aerial lift, and the platform floor should be within 1 foot 

horizontally of adjacent structure.” This statement in this draft standard was adopted from 

the regular scaffold standard, which may not be appropriate for aerial lifts (and especially so 

for scissor lifts). The current ANSI A92.6 Standard (2006) for Self-Propelled Elevating 

Work Platform [scissor lift] states that “if permitted by the manufacturer, the personnel shall 

only vacate or enter a raised aerial platform by following the guidelines and instructions 

provided by the manufacturer.” The results of this study will provide useful quantifiable 

information for developing safe “entering and exiting procedures at an elevation” for scissor 

lifts. These study findings can also be applicable for other construction elevated devices, 

heavy construction vehicles, trucks, mining equipment, and agricultural tractors (Bottoms, 

1983; Moore et al., 2009; Pan et al., 2012).

It is inarguable that it is inherently problematic to conduct fall-related research without 

putting human subjects at risk for fall-related injuries. Common risk hazard exposures, when 

duplicated in experimental conditions, would require implementation of protective measures 

from the NIOSH Institutional Review Board (IRB). Any concerns that the IRB might have 

regarding hazardous exposures to subjects were dealt with through modifications in the 

experimental design, which was developed to overcome these scientific obstacles and return 

actionable and useful information, allowing for advanced methods of analysis that would 

allow the contribution of individual variables to be determined. This study demonstrated that 

impact forces and postural stability were significantly affected by various entering and 

exiting methods. Findings from this study will be used to suggest safer work practices to 

prevent fall injuries from elevations during the use of scissor lifts, and provide input to revise 
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the ongoing ANSI A10.29 standard section in the use of aerial lifts as an elevator (Chiou et 

al., 2015).

5. Conclusions

In summary, this study quantifies the ground shear forces and stability effects that are found 

for subjects entering or exiting lifts when the adjacent work surface is sloped, through gates 

or bar-and-chain openings, and at horizontal and vertical distances from the landing surface. 

The findings from this research suggest: (1) scissor lifts would have gates in preference to 

bar and chain openings, (2) the adjacent work surface would be non-sloped, (3) the lift 

platform surface would be less than 0.2 m (8 inches) lower than the landing surface, and (3) 

the horizontal distance between a lift platform surface and the adjacent work surface would 

be less than 0.35 m (14 inches).
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Figure 1. Scissor Lifts
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Figure 2. Experimental Setup
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Figure 3. Two Types of Scissor Lifts
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Figure 4. Effects of Experimental Conditions on shear ground reaction forces Fx and Fy from 
session 1
Note: Different letters denote values that are statistically different form one another. Bars 

indicate the corresponding 95% confidence interval.
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Figure 5. Effects of experimental conditions on postural sway from session 1
Note: Different letters denote values that are statistically different form one another. Bars 

indicate the corresponding 95% confidence interval.
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Figure 6. Effects of experimental conditions on shear ground reaction forces Fx and Fy from 
session 2
Note: Different letters denote values that are statistically different form one another. Bars 

indicate the corresponding 95% confidence interval.
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Figure 7. Effects of Experimental Conditions on Postural Instability Experiment 2
Note: Note: Different letters denote values that are statistically different form one another. 

Bars indicate the corresponding 95% confidence interval.
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Table 1
Maximum Impact Forces and Standard Deviations (S.D.) in Lateral (Fx), Anterior/
Posterior (Fy) and Vertical (Fz) Directions, and the Resultant Force (FR) for Various 

Conditions Tested in Experiment 1

Condition Max Fx Max Fy AP Sway ML Sway

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Lift Type

 Gate 217.9 (30.2) 247.9 (29.6) 10.9 (1.2) 7.3 (0.5)

 Bar 296.3 (32.1) 279.4 (39.4) 8.6 (1.4) 9.8 (1.3)

Task

 Ingress 217.9 (28.8) 279.4 (34.6) 10.9 (1.3) 8.7 (0.9)

 Egress 296.3 (35) 268.4 (37.6) 8.6 (1.3) 9.8 (1.1)

Horizontal distance

 7 inches 245.4 (32.1) 279.4 (38.0) 8.6 (1.2) 7.6 (0.9)

 14 inches 296.3 (33.4) 260.3 (35.8) 10.9 (1.4) 9.8 (1.0)

 21 inches 206.9 (30.9) 247.9 (36.5) 8.6 (1.3) 8.7 (1.1)

Vertical distance

 12 inches lower 245.4 (39.9) 279.4 (43.2) 10.0 (1.4) 7.6 (1.2)

 8 inches lower 185.8 (30.7) 268.4 (38.4) 10.9 (1.4) 8.7 (1.0)

 4 inches lower 206.9 (30.2) 200.1 (35.1) 7.8 (1.3) 4.7 (0.6)

 0 inches (flat) 205.7 (28.0) 157.4 (32.5) 7.6 (1.1) 7.5 (0.7)

 4 inches higher 174.7 (28.0) 182.2 (33.4) 8.2 (1.3) 6.2 (1.0)

 8 inches higher 196.9 (30.6) 225.5 (37.2) 8.6 (1.4) 7.6 (1.1)

 12 inches higher 296.3 (32.1) 169.3 (31.6) 7.4 (1.2) 9.8 (1.2)

Note: Forces are in Newtons
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Table 2
Summary of Repeated Measures ANOVAs by Experimental Conditions Experiment 1

Tests of Fixed Effects

Force Variables Sway Variables

FX FY
AP

Sway
ML

Sway

Lift Type *** *** *** ***

Task *** *** *** ***

Horizontal Distance *** ***

Vertical Distance *** ***

Lift*Task *** *

Lift*Horizontal Distance *

Lift*Vertical Distance *** *

Task*Horizontal Distance * * **

Task*Vertical Distance *** ***

Vertical*Horizontal Distance

*
p<0.05

**
p<0.005

***
p<0.0001
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Table 3
Maximum Impact Forces and Standard Deviations (S.D.) in Lateral (Fx), Anterior/
Posterior (Fy) and sway in the anterior/posterior and mediolateral directions for Various 
Conditions Tested in Experiment 2

Condition Max Fx Max Fy AP Sway ML Sway

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Lift Type

 Gate 183.3 (29.1) 722.3 (188.3) 6.0 (0.7) 3.3 (0.4)

 Bar 239.9 (30.7) 759.2 (195.6) 35.6 (2.8) 17.3 (1.8)

Task

 Ingress 157.9 (25.5) 414.7 (43.4) 35.6 (2.6) 17.3 (1.4)

 Egress 239.9 (36.1) 759.2 (229.5) 9.1 (1.5) 7.4 (1.2)

Vertical distance

 8 inches lower 239.9 (34,3) 759.2 (193.6) 8.2 (1.4) 4.9 (0.8)

 Flat 137.2 (27.4) 720 (186.6) 35.6 (3.1) 17.3 (1.7)

 8 inches higher 180.7 (30.3) 724.7 (197.1) 9.1 (1.3) 7.4 (1.2)

Slope

 0 degrees 183.3 (29.8) 389.1 (44.2) 7.0 (1.2) 7.4 (0.9)

 26 degrees 239.9 (32.4) 759.2 (221.1) 35.6 (2.7) 17.3 (1.6)

Note: Forces are in Newtons
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Table 4
Summary of Repeated Measures ANOVAs by Experimental Conditions Experiment 2

Tests of Fixed Effects

Force Variables Sway Variables

FX FY
AP

Sway
ML

Sway

Lift type *** *** *** ***

Task ***

Slope * *** ** **

Vertical Distance *

Lift*Task ***

Lift*Slope *

Lift*Vertical Distance **

Task*Slope ***

Task*Vertical Distance *

Slope*Vertical Distance

*
p<0.05

**
p<0.005

***
p<0.0001
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